TL;DR SpeechBrain gives us a modular PyTorch toolkit with 200+ recipes and
Hugging Face models to prototype custom ASR, diarization, and enhancement
systems. We still ship Whisper for production subtitles and offline shoots, but
SpeechBrain shortens experimentation time when we need bespoke models.

Why SpeechBrain is on our radar

Our creative ops team keeps bumping into audio edge cases that hosted APIs can't fix: dialect-
heavy UGC, noisy bazaar shoots, brand-specific vocab. SpeechBrain promises an open-source
path to train or fine-tune models against those pain points. With over 200 community recipes
and interoperability with Whisper, Wav2Vec, Hubert, and Llama backbones, it fits the gap
between rapid experiments and fully managed APIs like gpt-4o-transcribe or Qwen3-ASR.

Toolkit highlights

¢ Unified PyTorch stack: Consistent abstractions for ASR, speaker verification,
enhancement, separation, and even EEG inputs.

¢ Recipe library: YAML-driven training pipelines for 40+ datasets; we can copy, edit
hyperparameters, and rerun with our branded corpora.

e Pretrained zoo: 100+ Hugging Face checkpoints (speechbrain/*) with three-line inference
helpers.

e Community velocity: Active benchmarking branch, tutorials, and Colab notebooks keep
contributors shipping new ideas faster than we could rebuild in-house.

Quickstart for Instavar experiments

python -m venv .venv
source .venv/bin/activate
pip install speechbrain==1.0.0 torch==2.3.1 torchaudio==2.3.1 -f https://download.pytorch.org/whl/cu121/torch_stable.html

from speechbrain.inference import EncoderDecoderASR

model = EncoderDecoderASR.from_hparams(
source="speechbrain/asr-conformer-transformerim-librispeech",
savedir="pretrained_models/asr-transformer-transformerlm-librispeech"

)

print(model.transcribe_file("samples/founder_pitch.wav"))

Swap the source with our fine-tuned checkpoints to benchmark against Whisper outputs in the
same notebook.

© 2025 Instavar - CC-BY 4.0



Slotting SpeechBrain into R&D loops

1. Data prep: We export call transcripts, UGC reels, and brand vocabulary from Notion into
Librispeech-style manifests via a small Python script.

2. Recipe fork: Clone the nearest recipe (e.g., recipes/LibriSpeech/ASR/transformer/). Adjust
augmentation, vocab, and learning rate inside hparams/train.yaml.

3. Training: Kick off runs on our on-prem A100 pool with python train.py hparams/train.yaml.
Artifacts sync to S3 for later comparisons.

4. Evaluation: Use SpeechBrain’s scoring utilities to compute WER/CER against validation
sets, then push promising checkpoints into our internal Hugging Face org for
downstream testing.

A typical fine-tune on 20 hours of bilingual clips takes ~6 hours on a single A100—
straightforward to budget for weekend batches.

Strengths we lean on

e Full control: Every module is hackable, so we can inject pronunciation lexicons or
experiment with RNN-T vs Conformer architectures.

e Augmentation stack: Built-in SpecAugment, noise mixing, and room impulse response
utilities let us simulate noisy retail environments without hunting for extra scripts.

e Cross-task reuse: The same toolkit handles voice activity detection and diarization,
which helps when we prototype meeting note automations.

e Open governance: MIT-style licensing, transparent roadmap, and active maintainers
mean we can rely on community updates rather than waiting for vendor features.

Where Whisper still wins

¢ Production stability: Whisper-large-v3 delivers predictable word timestamps and
segmentation that our caption templates depend on.

e Offline capture: Our on-set MacBooks run Whisper locally—no internet or GPU rig
required.

¢ Tooling ecosystem: Gentle alignment, StableTS, pyannote diarization all plug directly
into Whisper outputs with minimal glue code.

e Operational cost: Once GPU clusters are saturated with video renders, spinning up
custom SpeechBrain jobs can be pricier than reusing Whisper transcripts for most
campaigns.

In short, SpeechBrain is our lab bench; Whisper remains the factory line.

Operational tips



e Version control hparams/*.yaml alongside training logs so creative tech can reproduce
results post-launch.

e Cache pretrained checkpoints in Artifactory; pulling from Hugging Face during each Cl
run slows experimentation.

e Use speechbrain.utils.parameter_count to monitor model size before handing artifacts to
Remotion workflows—keeps inference within our latency SLAs.

e Pair SpeechBrain-generated transcripts with our standard QA harness (WER, brand term
spot checks) before swapping them into production pipelines.

References

e SpeechBrain GitHub: https://github.com/speechbrain/speechbrain
e Documentation: https://speechbrain.readthedocs.io/

e Hugging Face models: https://huggingface.co/speechbrain

e Whisper repo: https://github.com/openai/whisper

Notes: Findings based on Instavar lab runs during 2025-09 R&D sprints. Validate
performance on your datasets before committing production workloads.

CTA:

© 2025 Instavar - CC-BY 4.0



